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Abstract. For a Dirac system with a perturbation patential V (r) obeying fum( T40)jViridr <
o0, the behaviour of the Titchmarsh-Weyl m-function near the spectral-gap endpoints is
examuned. As 2 consequence, we obtain another demanstration of the Levinson theorem.

1. Introduction

We consider the Dirac operators

Ho= J{y' — B(r)y] (1)
and

Hy = J[y — (BUr} + P(r)y] O<r < oo (@)
where

(0 -1 _{ wir -E-M

J—(l 0) B(r)_(E—M —p./r)

P(r):(__ov ‘5) p=ElLE2,43,... M>0
and

— y](EN")
y(E"')"(yzcs,r))'

Our main assumption will be the [imit-point hypothesis

foo(l + )0V dr < o0 (3)
0

Operators of the form (1) and (2), with various hypotheses, have recently attracted
considerable attention {1-7] in connection with Levinson’s theorem [8], by which the
number of bound states of H are obtained by variation of an appropriate phase along
the continuous portion of the spectrum. It is a purpose of this paper to provide another
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demonstration of this celebrated theorem. The contribution here is the method of proof. In
[5] and [6], Green’s function methods are used to obtain the Levinson theorem, in [1-3],
Jost functions are employed and, in {4], the Sturm-Licuville theorem is used. Qur present
treatnent will rely on the Titchmarsh-Wey!l m-function (see {9-11} for the regutar case)
associated with the equation

Hy=Ey (€]
which we view as a perturbation of
H,y=Ey. (5)

The spectrum of H is known to consist of an absolutely continucus part (—oo, —M]
{LJ[M, oo) with a possible finite number of eigenvalues in (—M, M); and, hence, Levinson's
theorem consists of varying an appropriate argument around £M; from here also stems our
interest in studying the m-function as £ — LM, whose behaviour also characterizes the
existence of bound states (BS) or half bound states (HBS). QOur results are only stated for the
case E — +M as the extension to E — —M is obvious.

Our analysis will draw a lot on {2,3]. In particular, our asymptotics are obtained in
the same manner as in these references. As such, we will give a number of asymptotic
results without detail and refer the reader accordingly. The paper is organized as follows.
In section 2, we obtain the Titchmarsh-Weyl m-function in terms of Jost-like functions. We
then derive the m-function asymptotics and obtain the Levinson theorem in section 3.

2. Jost functions and m-functions

Here we shall describe the m-functions and obtain their representations in terms of Jost
functions. Let us begin with the fundamental matrix for (5), i.e.

0
YXE, )

M
([n,u(k)j,u—l (kr) — julk)ny— (kr)] Et Ua—tGInger (k) = e (k) fum1 (k7] )
r

k
[ () ju (Kny (k)] D1 (R kY — nymy (k) Ju (k)]

E+M
(6)

where 1, (x) and j,(x) are the spherical Bessel functions and k = ~ E? — M? is chosen so
thatk > Oon M < E < oo and k < 0 on —c0 < £ < —M. In particular, Y}(E, 1) = L,

Then we partition YE(E, r) as [Gﬂ(E, r gbg(E, r)]. The m-functions for (5) at r = 0 and
r = ca are then, respectively, given by

o GUET)

0 T
m(B)=—lim ED @
and
m$(E) = ~ lim Sl 1) (8)

r~co ¢r(E,7)
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Straightforward computation using (6) yields, as r — oo on Im#k > 0,

E M
| cf  mto =Y w
Xplilkr = mp/DYUE, ) =51 4 k O
——h, (k) —ih, 1 (k)
E+4+ M
where £, (£} = n,(x) + 17, (x); and as r — 0, we have
(kr)*YNE, 1)
2 2
——-—-(kr)r (k) + krsy j, (k) _EtM [kr [y (k) + __(kr) #:M-I(k)]
=k =3 1
k (i , kr) -+, (k)
T, [ T +J,u(i)r[] =i ju1 k) - T,
+o(1) (10)

where 'y = Qu —e)!! = 2 — o) (2p — ¢ = )21~ —4) ... From (7) and (9), the
m-functions for (5} are therefore given by

R 2 L)

") = M e ® ab
and

0 ek B

) e ® (12)

Next, we look at solutions and m-functions for (4). By variation of parameters, the solution
Y(E, r) obeying

, _ {n)
yE, 1) ()’2(1))

is given by

D »(l) . 0 _
y(E,r)—YM(E,r)[(yZ(I))+ f. [YO(E, 1] ’P(r)y(z)(E.r)dr]. (13)

Now fet [YS(E. )] P(1)y(£, t) be denoted by Q(y(t)) and fet

k E+M o9
a8 = 5 (a0, -2 hu_,(k))[(;;ﬁﬁ% / Q(y(r))dr]. (14)

Then (9) and standard asymptotics yield that, as » — oo for Im& > 0, we have

ik

exp(i(kr —wp/2)Y(E. r) = A,(E) ( ! ) + o(1). (15)
E+M

In particular, (15) holds for the solutiens 8(E, r) and ¢(E, r) defined by (1, r), (1, r)] ==
I and hence, the m-function for (4) at r = o is obtained as

BB AlE)
) = B S~ AsE)

(16)
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Letting B.(E) be defined as
_ Co E+M . yi(l) :
5@ =41 (10, - S i) (163) - [ a0wn]  am
we find that, as » — 0 for Imk > 0, we have
(kr)*y(E, r) = By(E) ( r i”.,._@) + o(r). (18)
T &

It therefore follows from (18) that the m-function for (4) at r =0 is

_ . G(Er)  B(E)
mo(E) = = i e~ Bo(E)

(19)

A few comments regarding Ay(E) and B, (E), which we call Jost functions, are in order. It
fotlows from (15) and (18) that (Aa, Ay) and (By, B,) are non-vanishing pairs; for if either
pair vanishes, then (4) has all L? solutions at the appropriate endpoint. In particular, if we
think of the operator H as the union Tp|_J Tw. where Ty and 7, denote the restrictions of
H to (0,1] and [1, oc), respectively, then the discete spectra of 7y and T, are the zeros of
B, and A, respectively.

Let us recall [9] that the m-function for (4) on (0, o) is defined as

1 z(m~ + m+))

1
m® =z (s s o 20)

Also, if we let p(E) denote the spectral matrix function for H, then we recall that m and
p are connected by the Titchmarsh—Kodaira formula

A
p(lz)—p(ls)=—llimf Imm(u + iv) du (21}
T vl A

at points of continuity Ay, A3 of p. We shall use this connection to obtain the behaviour of
pas £ — M. On account of (16} and (19), we may write (20) as

_{mn mpz
m(E) = (mzl mzz) @)
where

= As(E)By(E) 1oy o A6(E)Bo(E)

! F(E) 27 TRE)

Ag(E)By(E) + Ap(E)Bs(E)

Miz=my = 2F(E)
F(E) = Ag(E)By(E) — Ag(E) By E). (23}

There are two other solutions ¥ and f, relevant to our discussion, which we will call the
Jost solutions. These are defined by their behaviours as r — 0 and r — oc, respectively,
namely

1
Y(E, r) > r¥ ( (E.[:h,!,) (24)
Fo
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rc
FE, v} — exp(ithkr 4+ o pu/2))k" ( —1 )

and are explicitly given by

i
W{E.r)=r’“‘(gf )+Y Er)f QY () de

To

and

EtMprn, _ (kr)

F(E 1) =k (_"Zm#(k}) ) — Y(E.r) f "oy
By evaluating Wronskian determinants, straightforward calculations then yield
ANE)=W[f(E, r); y(E. N
and
By(E) = WY (E.r): y(E,r)]
where y(E, r) is given by (13). We therefore obtain the relations
FE. r) = Ay(EYB(E, 1) + Ag(E)G(E, r)
and
W(E,r) = By(EYO(E,r) + By(EYP(E, r).
In particular, we have that
F(E) = WY (E,r}; f(E,r)]

where F(E) is given by (23).

3. Asymptotics and Levinson’s theorem

7839

(25)

(26)

(27)

(28)

(29)

(30)

(3D

(32)

To obtain the m-function asymptotics, we shall need the solutions of equation (4) at

E=M,ie.

Hy =My

(33)

corresponding to those given in the last section. These are given by (13), (26) and (27) at

E=M:

—y° yi(M, 1) "eyo -
yM,r)=Y, (M, r) [(yg(N,l))-*-/; (Y, (M, 1) lP(Jt)y(M,t)dt:I (34)

$M.r) = () f Q°(w (1)) dr

(35)
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and
_ik_ oo
FOM. 7y = explilkr + pr/2)H (E;M ) + [T e (36)

where we have denoted 0%z (7)) = {YE(M OV P()z(M, 1) and note that

pi 2D p-ptl oy
Y3M, 1) = ( o ) : (37)
The corresponding Jost functions are given by
— ¥ (M, 1) «© ,
and
_ i, Y _ [t o
sun=0.0((293) - [ eowa) (39)

which aiso have the identifications (28) and (29) and verify relations (30) and (31) mutatis
mutandis. The following lemma is then obtained in the same way as lemma 2.1 of [4].

Lemma 3.]. Suppose that V{(r) obeys (3) and let § > 0. Then, there is 2 constant C
depending only on & such that, for E € [M, M + 8L
(a) if Ay(M)=0and y > 3, then

’ o
. < Cp2 | ——
[ (E,r) — y (M, )| < Ck (i-i—kr)

B \ r p+1 r "
|y2(E,I‘) )’Z(M»"‘)1<Ck {(14‘&!) +(1+k!’)

(b) if Ay(M) =0 and u < 3, then

2 2
!ye(E.r)—yf(M,r)lkaz[( kr )+ kr } i=12

and

14 kr 1+ kr

Using lemma 3.1, we are then able to prove the next result, the proof of which follows
that of theorem 2.2 of [3] (cf lemma 3.2b of [2]).

Lemma 3.2. The asymptotic behaviour of A,(E) and By(E), uniformly on 0 < arg(E ~
M) € 2m, is as follows.

{a)

(i) If A;(M) =0 and u > 2, then A,(E) = aJk* + o(k?).

() If A4,(M) =0 and i < 2, then Ay(E) = a5k + ok), where

I ) , oo
a; = MIIy(M, ] af = —2iMd, dy = —f[ V() yi(M, 1) dt.
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() If B,(M) =0, then By(E) = byk® + o(k”), where

by = fm V) [y] (M,t) — %ﬂityg(M, r)] dr.
| -

Recalling (32), we may evaiuate Wronskians using (26). (27), (35) and (36) 1o obtain
the following representations:

F(E) = (1 kz*‘“ )(w(E 0) + f wa(z))dr) (40)
and
FiMy=1+ fm VT (M, £) 4+ 2MT3ty (M, £)] dz. 41)
[s]

Standard asympitotics then yield the following lemma (we refer the reader to [2] for its
proof).

Lemma 3.3. The asymptotic bebaviour of F(E) as £ — M, uniformly for 0 <
arg{E — M) < 2m, is as fol]ows

(@ F(M)=0and u 2 2, then F(E) = k2 + o(k?).

{b) If F(M)=0and p < 3, then F(E) = f~k? + o(k?), where

>_L_ . 2 < __ _ . __fm I
f —ZMgIIxIJ(M. i FT=-2Mig g= A Ve (M, 1) dr.

(¢) In fact, one has < = (Apg(M )by + Bs(M)a=") — (Ap(M)bg + Bg(M)a;’).
We now prove the following theorem.

Theorem 3.4. The asymptotic behaviour of m{E) as E — M is as follows.

(a) F(M)=0 < limypovm(M +iv) =35>, u 22

(b) F(M) =0 &= lim,p v 2m(M +iv) = §<, u < 2, where §< and 5% are matrix
functions of M and u only.

Proof. This follows directly from lemmas 3.2 and 3.3 and the m-function representation
(21). First, we note that the numerators in (22), evaluated at E = M, cannot simultaneously
vanish, Hence, if F(M) # 0, we then have m(M + iv) = S,(M)/F(M), where S.() is
a non-zero matrix, so that v'2m(M +iv) — 0 and vm(M +iv) — 0. i F(M) = 0 and
(= 3, we then obtain m(M + iv) = S.(M)/f>k? and, noting that k = 2iMv'/2 + O(v)
as v = 0, we therefore obtain (a). For F(M) = 0 and ¢t < %, we similarly have
m(M +iv) = §,(M)/f <k and, hence, (b). a

Remarks.

(1) Theorem 3.4(a) precisely states that E = M is a bound state (recalling that a half-
bound state does not occur at £ = M for u = 2) provided m(M + iv) approaches S /v
as v | 0, which says m becomes singular at E = M with a simple pole. This is expected
since the poles of m, all of which are simple, are precisely the bound states of H.

(i) Part (b) of theorem 3.4 says that £ = M is a half-bound state provided m(M + iv)
approaches S,/v'/* as v | 0, which is the same as the behaviour obtained for the Dirac
system with non-singuiar potentials {9-11].
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As an immediate corollary of theorem 3.4 and the well known identity (21), we therefore
obtain the following corollary.

Corollary 3.5.
(a) lim M =0 if no BS or HBS occur at £ = M
£\ dE
. dp(E) So (M) .
(b) ‘lglm 5= I (E — 1) ifaBS occurs at E = M
E (M ,
(¢) lim do(E) So(M) if a HBS occurs at £ = M.

EwM dE  2mf<M(E — MY

By (32) and the fact that  and f are the only square integrable solutions at r =
and r = co, respectively, we see that the zeros of F(E} are precisely the bound states
of H, excepting E = M. If we let §(F) denote the phase angle of F(E), ie. let
F(E) = |F(E)lexp(iS(E)), we then have the following theorem, whose proof follows
from the standard argument principle (exactly as in [2], noting that M — —AM} and the
obvious extension of lemma 3.3 to £ = —M.

Theorem 3.6 (Reference [2] theorem (1.1)). Let N, denote the number of bound states of
H in [—-M, M]. Then:

(@) Ny = L(8,(M) + 8, (~M)), 1t > 3: and

(b) Ny = L8, (M) + 8,(—M) + £, p < 2, where

A { 0 if 2 HBS does not accur at E = M
- if a HBS occurs at £ = M.
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