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I .  Phys. A’ Math. Gen. 27 (1994) 785-7842, Printed in the UK 

Titchmarsh-Weyl theory and Levinson’s theorem for Dirac 
opera tors 

Dominic P Clemence 
Depmmeni of Mathematics. University of Zimbabwe, PO Box MP167, Mount Plwant. 
Harare. Zimbabwe 

Received 4 March 1994, in final form 12 October 1994 

Abstract. Fora D i m  system with apelturbation potential V ( r )  obeying /;(I +r)jV(r)jdr < 
m. the behaviour of ihe Titchmarsh-Weyl m-function near the specual-gap endpoints is 
examined. &? a consequence. we obtain mother demonstration of the Levinson theorem. 

1. Introduction 

We consider the Dirac operators 

Ho = J [ y ‘  - B ( r ) y ]  

and 

HY = J[Y’ - ( B ( r )  + P ( r ) ) y ]  0 < r < 00 

where 

and 

Our main assumption will be the limit-point hypothesis 

l w ( J  +r)lV(r) ldr  4 W .  (3) 

Operators of the form (1) and (2), with various hypotheses, have recently attracted 
considerable attention [1-7] in connection with Levinson’s theorem [8] ,  by which the 
number of bound states of H are obtained by variation of an appropriate phase along 
the continuous portion of the spectrum. It is a purpose of this paper to provide another 
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demonstration of this celebrated theorem. The contribution here is the method of proof. In 
[ 5 ]  and 161. Green's function methods are used to obtain the Levinson theorem, in  [ 1-31, 
Jost functions are employed and, in 141, the Sturm-Liouville theorem is used. Our present 
treatment will rely on the Titchmarsh-Weyl m-function (see [9-11] for the regular case) 
associated with the equation 

H y  = E y  (4) 

which we view as a perturbation of 

H,y = Ey.  (5) 

The spectrum of H is known to consist of an absolutely continuous part (--00, -MI 
U[M, -00) with a possible finite number of eigenvalues in (-M, M); and, hence, Levinson's 
theorem consists of varying an appropriate argument around fM; from here also stems our 
interest in studying the m-function as E + &M, whose behaviour also characterizes the 
existence of bound states (Bs) or half bound states (HBS). Our results axe only stated for the 
case E -+ +M as the extension to E + -M is obvious. 

Our analysis will draw a lot on [2,3]. In particular, our asymptotics are obtained in 
the same manner as in these references. As such, we will give a number of asymptotic 
results without detail and refer the reader accordingly. The paper is organized as follows. 
In section 2, we obtain the Titchmarsh-Weyl m-function in terms of Jost-like functions. We 
then derive the m-function asymptotics and obtain the Levinson theorem in section 3. 

2. Jost functions and m-functions 

Here we shall describe the m-functions and obtain their representations in terms of Jost 
functions. Let us begin with the fundamental matrix for (5). i.e. 

Y;(E, r )  

I j , - t ( k ) n , - ~ ( k r )  - n w - ~ ( k ) j w - l ( W l  
E + M  

[ n , ( k ) j w - ~ ( k r ) - j ~ ( k ) n ~ - l ( k r ) 1  7 
= k r  ( kIn, (k) j , (k)n , (kr) l  E + M  [j,- I (0, ( k r )  - n,- I ( k )  j, ( k r )  I 

(6 )  

where n , ( x )  and j , ( x )  are the spherical Bessel functions and k = is chosen so 
that k z 0 on M e E c 00 and k c 0 on --w c E c -M. I n  particular, Y j ( E ,  1 )  = 12. 
Then we partition Y j ( E , r )  as [ $ ( E ,  r )  @ ( E , r ) ] .  The m-functions for ( 5 )  at r = 0 and 
r = 00 are then, respectively, given by 

and 
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Straightforward computation using (6) yields, as r + 00 on Im k > 0, 

+ o(l) (10) 

where r, = (2p - a ) ! !  = (2p  - a) (2p  - a - 2)(2p - (Y - 4 ) .  t . .  From (7) and (9), the 
m-functions For (5) are therefore given by 

and 

Next, we look at solutions and m-functions for (4). By variation of parameters, the solution 
y ( E ,  r )  obeying 

is given by 

Now let [Y:(E. t ) l - ’P(t)y(E,  r )  be denoted by Q ( y ( r ) )  and let 

Then (9) and standard asymptotics yield that, as r --f 00 for Im k > 0, we have 

In particular, (15) holds for the solutions Q ( E ,  r )  and @ ( E ,  r )  defined by [Q(l, r ) ,  @ ( l ,  r ) ]  = 
I and hence, the m-function for (4) at r = 00 is obtained as 
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Letting & ( E )  be defined as 

we find that, as r 0 for Im k 0. we have 

It therefore follows from (18) that the m-function for (4) at r = 0 is 

A few comments regarding AJE) and B,(E), which we call Jost functions, are in order. It 
follows from (15) and (18) that (AB. Am) and (Be ,  Bo) are non-vanishing pairs; for if either 
pair vanishes, then (4) has all Lz solutions at the appropriate endpoint. In particular, if we 
think of the operator H as  the union TO U T,, where To and T, denote the restrictions of 
H to (0.11 and [ I ,  co), respectively, then the discete spectra of TO and T- are the zeros of 
B, and A,, respectively. 

Let us recall 191 that the m-function for (4 )  on ( 0 , ~ )  is defined as 

Also, if we let p(E) denote the spectral matrix function for H, then we recall that m and 
p are connected by the Titchmarsh-Kodaira formula 

at points of continuity A I ,  A2 of p .  We shall use this connection to obtain the behaviour of 
p as E 3 M .  On account of (16) and (19), we may write (20) as 

where 

Ae(QB+(E) + Am(O&(E) m12 = mz, = 
2 F ( E )  

F(E) = As(E)B+(E) - Ag(E)Be!E). (231 

There are two other solutions + and f ,  relevant to our discussion, which we will call the 
Jost solutions. These are defined by their behaviours as r + 0 and r + 00, respectively. 
namely 
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and 
Ik 

f(E. r) + exp(i(kr + np/2))kp (T) 
and are explicitly given by 

and 

f(E. r )  = k’ vkrh’-’(kr)) krh,(kr) - Y j ( E , r )  lw Q(f(r))dt. (27) 

By evaluating Wronskian determinants, straightforward calculations then yield 

A , ( E )  = W f ( E ,  r ) ;  y ( E .  r)l 

and 

B,W = W [ $ ( E ,  I); Y ( E ,  r)l 

where y ( E ,  r )  is given by (13). We therefore obtain the relations 

f(E. r )  = A & W ( E .  r )  + As(E)@(E, r )  

and 

$ ( E ,  r )  = B+(E)B(E,  r )  + B d E ) @ ( E ,  r ) .  

In particular, we have that 

F(E) = W [ $ ( E ,  r ) ;  f ( E ,  r)l 

where F ( E )  is given by (23). 

3. Asymptotics and Levinson’s theorem 

To obtain the m-function asymptotics, we shall need the solutions of equation (4) at 
E = M ,  i.e. 

Hy = M y  (33) 

corresponding to those given in the last section. These are given by (13). (26) and (27) at 
E = M :  
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and 

f ( M , r )  = exp(i(kr + p7r/2))kp (e) + lm Qo( f ( t ) )  dt 

where we have denoted Qo( i ( t ) )  = [ Y j ( M ,  r)]-’P(t)z(M. t )  and note that 

(36) 

The corresponding Jost functions are given by 

and 

which also have the identifications (28) and (29) and verify relations (30) and (31) mutatis 
mutandis. The following lemma is then obtained in the same way as lemma 2.1 of 141. 

Lemma 3.1. 
depending only on 8 such that, for E E [M, M + SI: 

Suppose that V ( r )  obeys (3) and let 6 > 0. Then, there is a constant C 

(a) if A , ( M )  = 0 and p > 5, then 

and 

3 (b) if A , ( M )  = 0 and p < z, then 

Using lemma 3.1, we are then able to prove the next result, the proof of which follows 
that of theorem 2.2 of [3] (cf lemma 3.2b of [21). 

Lemma 3.2. 
M) < 2rr. is as follows. 

The asymptotic behaviour of A , ( E )  and B,.(E), uniformly on 0 < arg(E - 

(a) 
(i) If A,(M) = 0 and p > ;, then A , ( E )  = a;k2 + o(k2). 
(ii) If A , ( M )  = 0 and p c f ,  then A , ( E )  = a;k + o(k), where 
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.(b) If B,.(M) = 0, then B,(E) = b,k2 + o(kz ) ,  where 

b, 

Recalling (32), we may evaluate Wronskians using (26). (27). (35) and (36) to obtain 
the following representations: 

and 
m 

F ( M )  = I + 1 v ( t w - l @ z w ,  r )  + 2 ~ r 3 t @ ~ ( ~ ,  t) idt .  (41) 

Standard asymptotics then yield the following lemma (we refer the reader to [2] for its 
proof). 

Lemma 3.3. The asymptotic behaviour of F ( E )  as E --t M, uniformly for 0 < 
arg(E - M )  < 2 n ,  is as follows. 

(a) If F ( M )  = 0 and p > i, then F ( E )  = f ’k2  + o(k*) .  
(b) If F ( M )  = 0 and e 5, then F ( E )  = f ‘kZ + o(kz ) ,  where 

m 

f’ = -ll@(Ms.)IlZ rl f < = -2Mig g = -1 V(t)tP@,(M,t)dt.  
2Mg 

(c) In fact, one has f ”  = (As(M)b+ + B + ( M ) a < ’ )  - (A+(M)bs + 5 d M ) a ; ’ )  

We now prove the following theorem. 

Theorem 3.4. The asymptotic behaviour of m ( E )  as E --t M is as follows. 
(a) F ( M )  = 0 e lim,lo um(M + i u )  = S’, p > 2. 
(b) F ( M )  = 0 e lim,Jo u ’ / Z m ( M  + iu) = Sc, p < 2. where Sc and S’ are maaix 

functions of M and p only. 

Proof. This follows directly from lemmas 3.2 and 3.3 and the m-function representation 
(21). First, we note that the numerators in  (22), evaluated at E = M, cannot simultaneously 
vanish. Hence, if F ( M )  # 0, we then have m(M + i u )  = S , ( M ) / F ( M ) ,  where So(.) is 
a non-zero matrix, so that U ’ / ~ ~ ( M  + iu) --t 0 and um(M + iu) -+ 0. If F ( M )  = 0 and 
p > +, we then obtain m ( M  + i v )  = S o ( M ) / f ’ k 2  and, noting that k = 2iMu’/* + O(u)  
as v --t 0, we therefore obtain (a). For F ( M )  = 0 and p < f, we similarly have 
m ( M  + iu) = S , ( M ) / f C k  and, hence, (b). 

Remarks. 
(i) Theorem 3.4(a) precisely states that E = M is a bound state (recalling that a half- 

bound state does not occur at E = M for p > 2 )  provided m ( M  + iu) approaches S’/u 
as U J. 0, which says m becomes singular at E = M with a simple pole. This is expected 
since the poles of m ,  all of which are simple, are precisely the bound states of H. 

(ii) Part (b) of theorem 3.4 says that E = M is a half-bound state provided m(M + iu) 
approaches S o / v ’ / 2  as U j. 0, which is the same as the behaviour obtained for the Dirac 
system with non-singular potentials 19-1 I ] .  
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As an immediate corollary of theorem 3.4 and the well known identity (21), we therefore 
obtain the following corollary. 

Corollary 3.5. 

(a) lim dpo = o if no 5s or HBS occur at E = M 
ELM d E  

- (b) lim - - if a B s  occurs at E = M W E )  
ELM d E  4irMZf’(E-M) 

if a HBS occurs at E = M. S A M )  - W E )  (c) lim - - 
ELM d E  2 i r fCM(E - M)’fz  

By (32) and the fact that $I and f are the only square integrable solutions at r = 0 
and r = 00, respectively, we see that the zeros of F ( E )  are precisely the bound states 
of H, excepting E = hM. If we let 6(E) denote the phase angle of F ( E ) ,  i.e. let 
F(E) = IF(E)Iexp(iJ(E)), we then have the following theorem, whose proof follows 
from the standard argument principle (exactly as in [Z], noting that M --f -M) and the 
obvious extension of lemma 3.3 to E = -M. 

Theorem 3.6 (Reference 121 theorem (1.1)). Let Nu denote the number of bound states of 
H in [-M, MI. Then: 

(a) N,, = i(S,,(M) + 8,,(-M)), p > 2 ;  and 
@) N,, = $(6,,(M) + S, , -M))  + &, p .c 2.  where 

0 
-ir 

if a HBS does not occur at E = M 
if a HBS occurs at E = M .  

A = (  
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